04. DDPG: 评论者
DDPG: Critic (Value) Model
相应的评论者模型可以如下所示:
class Critic:
"""Critic (Value) Model."""
def __init__(self, state_size, action_size):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
"""
self.state_size = state_size
self.action_size = action_size
# Initialize any other variables here
self.build_model()
def build_model(self):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
# Define input layers
states = layers.Input(shape=(self.state_size,), name='states')
actions = layers.Input(shape=(self.action_size,), name='actions')
# Add hidden layer(s) for state pathway
net_states = layers.Dense(units=32, activation='relu')(states)
net_states = layers.Dense(units=64, activation='relu')(net_states)
# Add hidden layer(s) for action pathway
net_actions = layers.Dense(units=32, activation='relu')(actions)
net_actions = layers.Dense(units=64, activation='relu')(net_actions)
# Try different layer sizes, activations, add batch normalization, regularizers, etc.
# Combine state and action pathways
net = layers.Add()([net_states, net_actions])
net = layers.Activation('relu')(net)
# Add more layers to the combined network if needed
# Add final output layer to prduce action values (Q values)
Q_values = layers.Dense(units=1, name='q_values')(net)
# Create Keras model
self.model = models.Model(inputs=[states, actions], outputs=Q_values)
# Define optimizer and compile model for training with built-in loss function
optimizer = optimizers.Adam()
self.model.compile(optimizer=optimizer, loss='mse')
# Compute action gradients (derivative of Q values w.r.t. to actions)
action_gradients = K.gradients(Q_values, actions)
# Define an additional function to fetch action gradients (to be used by actor model)
self.get_action_gradients = K.function(
inputs=[*self.model.input, K.learning_phase()],
outputs=action_gradients)
它在某些方面比行动者模型简单,但是需要注意几点。首先,行动者模型旨在将状态映射到动作,而评论者模型需要将(状态、动作)对映射到它们的 Q 值。这一点体现在了输入层中。
# Define input layers
states = layers.Input(shape=(self.state_size,), name='states')
actions = layers.Input(shape=(self.action_size,), name='actions')
这两个层级首先可以通过单独的“路径”(迷你子网络)处理,但是最终需要结合到一起。例如,可以通过使用 Keras 中的 Add 层级类型来实现请参阅合并层级):
# Combine state and action pathways
net = layers.Add()([net_states, net_actions])
该模型的最终输出是任何给定(状态、动作)对的 Q 值。但是,我们还需要计算此 Q 值相对于相应动作向量的梯度,以用于训练行动者模型。这一步需要明确执行,并且需要定义一个单独的函数来访问这些梯度:
# Compute action gradients (derivative of Q values w.r.t. to actions)
action_gradients = K.gradients(Q_values, actions)
# Define an additional function to fetch action gradients (to be used by actor model)
self.get_action_gradients = K.function(
inputs=[*self.model.input, K.learning_phase()],
outputs=action_gradients)